23 de abr. de 2011

Pesquisa Científica

De acordo com um novo estudo, pacientes que se expõe às radiações de repetidas tomografias aumentam os riscos de desenvolverem câncer.

Um em cada três pacientes incluídos no estudo da Universidade de Harvard havia sido submetido a cinco ou mais tomografias, e um em cada 20 foi exposto a mais de 22.

Os pesquisadores afirmam que os resultados do estudo confirmam um modesto, porém clinicamente significativo, aumento no risco associado ao câncer.

Cerca de 68 milhões de tomografias foram realizadas nos Estados Unidos em 2007, e 62 milhões no ano anterior.

Diferentemente dos raios-X convencionais, a tomografia computadorizada fornece análise detalhada e imagens tridimensionais dos órgãos internos, o que ajuda os médicos a diagnosticar e monitorar a propagação de doenças.

Graças a uma base de dados eletrônica, os pesquisadores foram capazes de acompanhar casos de mais de 31.400 pacientes que realizaram tomografias em 2007 no Brigham and Womens Hospital e no Harvard Dana-Farber Cancer Center.

Foi descoberto que:

5% dos pacientes do estudo haviam feito mais de 22 tomografias, e 1% tinha feito mais de 38 exames

15% dos pacientes receberam doses de radiação estimadamente superiores a da exposição às radiações de 1000 radiografias de tórax

4% dos pacientes tiveram, durante sua vida, a estimativa de exposições equivalentes a 2500 radiografias de tórax

Utilizando um modelo de avaliação de risco, os pesquisadores descobriram que 7,3% dos participantes do estudo tiveram um elevado risco de câncer devido a radiações provenientes da tomografia. Mas, para a maioria dos pacientes o risco era muito pequeno.

"A tomografia computadorizada é um fantástico instrumento para diagnósticos e não gostaríamos de ver pacientes recusando exames necessários porque estão preocupados com o câncer", diz o pesquisador Aaron Sodickson. "Mas os pacientes e seus médicos também precisam cientes de que existem riscos e esses riscos se somam ao longo do tempo."

G. Donald Frey, professor de Radiologia da Universidade de Medicina da Carolina do Sul garante que a comunidade de radiologia está trabalhando arduamente para descobrir quando e onde as tomografias são utilizadas excessivamente.

"É claro que a tomografia está sendo utilizada em excesso, mas não é tão fácil dizer onde isto está acontecendo", diz o professor. "Gostaria de incentivar os pacientes a não pressionarem os médicos, a fim de realizarem exames tomográficos, e gostaria de incentivar os médicos a tomarem consciência das motivações adequadas para indicar um exame."

Fonte: Banco de Saúde

Doses Menores

Pesquisa propõe menos sessões de radioterapia para o tratamento do câncer de mama

A pesquisa denominada United Kingdom Standardisation of Breast Radiotherapy (Padronização do Reino Unido para Radioterapia Mamária) foi desenvolvida, ao longo de uma década, por 35 centros de estudo britânicos, sendo financiada pelo Ministério da Saúde inglês e por outras entidades de combate ao câncer de mama. O resultado aponta que a redução do número de sessões de radioterapia, contrabalanceadas pela ampliação de sua intensidade, pode gerar efeitos tão satisfatórios quanto os dos atuais tratamentos.

Apesar das sessões serem mais fortes, a radiação total recebida pela paciente, submetida a um menor número de procedimento é inferior e os efeitos secundários são mais leves, de acordo com a conclusão do estudo.

A nova proposta
Atualmente, o tratamento utilizado após a retirada de um tumor da mama é de 25 sessões de dois grays cada uma, totalizando 50 grays, no decorrer de cinco semanas. Todavia, os pesquisadores concluíram que radiação total menor, dada em menos doses mais espaçadas, é tão efetiva quanto o tratamento atual.

Os pesquisadores utilizaram no estudo aproximadamente 5..000 pacientes com dosagens de intensidade variada e concluíram que um programa de 40 grays em 15 doses, ao longo de três semanas, fornecerá um bom controle do tumor e seus efeitos colaterais são semelhantes aos do tratamento atual.

A adoção desta medida nos hospitais e clínicas do mundo inteiro diminuiria o número de visitas das mulheres aos centros de radioterapia e, por conseqüência, as filas de espera.

Fonte:www.conter.gov.br

14 de abr. de 2011

Questões Relevantes a Radiologia (2ª)

1. Cite uma propriedade básica das radiações ionizantes.
2. O que significa dose absorvida?
3. Qual a unidade de medida para a dose absorvida?
4. O que significa dose equivalente?
5. Qual a unidade de medida para a dose equivalente?
6. O que é dosímetro?
7. Qual a finalidade do dosímetro?
8. Quais são os dosímetros mais comuns?
9. Quais são os métodos de controle das doses de radiação?
10. Descreva o fator de controle: tempo.
11. Descreva o fator de controle: distância.
12. Descreva o fator de controle: blindagem.
13. Qual a dose máxima permitida para um indivíduo ocupacional?
14. Qual a dose máxima permitida para um indivíduo público?
15. Que órgão público é responsável pelas regras de controle e fiscalização das radiações?
16. No que consiste os efeitos biológicos da radiação?
17. O que são efeitos determinísticos?
18. O que são efeitos estocásticos?
19. O que são efeitos somáticos?
20. O que são efeitos genéticos?
21. Quais são os equipamentos mais usados no setor de radiodiagnóstico?
22. Qual a diferença básica entre o dosímetro e o avental de chumbo?
23. Que KV deve ser utilizado numa radiografia de abdome, em AP de um paciente com 90 kg, com espessura 28 cm e com constante do aparelho de 32?
24. Uma radiografia feita com foco fino de 150mA e 0,25s quanto terá de mAs?
25. Uma radiografia foi feita na distância foco filme de 1,5m, com 100mAs. Se reduzirmos a distância foco filme para 75 cm, qual o novo mAs a ser utilizado?

Respostas:
1) Uma das propriedades básicas da radiação ionizante é a sua capacidade de transferir energia para o meio no qual se propagam.
-----
2) Dose absorvida é a dose de radiação que a matéria exposta absorve nos exames radiológicos.
-----
3) As unidades da dose absorvida são determinadas por unidade nova = Gray (Gy) e unidade antiga = Rad.
-----
4) Dose equivalente é a dose de radiação correlacionada aos efeitos destrutivos sobre o corpo do ser humano.
-----
5) As unidades da dose equivalente são determinadas por unidade nova = Sievert e unidade antiga = Rem.
-----
6) Dosímetro é um detector, com propriedade de acumular efeitos físico-químicos proporcionais à quantidade de exposição às radiações recebida num intervalo de tempo.
-----
7) A finalidade do dosímetro é de registrar as doses de radiação recebidas pelos técnicos durante um determinado período de tempo.
-----
8) Os dosímetros mais comuns são os de filmes fotográficos, que enegrecem proporcionalmente à quantidade de radiação recebida.
-----
9) Os métodos de controle de exposição à radiação são: o tempo, a distância e a blindagem.
-----
10) O controle de tempo de exposição da fonte de radiação é um fator associado à carga de trabalho do equipamento. Exposição = tempo x intensidade.
-----
11) A distância como fator de controle de exposição é mais prático, mais barato e mais rápido, tanto em situações normais quanto emergenciais.
-----
12) A blindagem como fator de controle de exposição é mais complicada por ser mais cara. Ela depende, basicamente, da característica da radiação e do material usado para absorvê-la. OBS: a câmara semi-redutora de um material é a espessura que reduz a radiação à metade do seu valor original.
-----
13) Dose máxima para o indivíduo ocupacional = 50mSv/ano.
-----
14) Dose máxima para o indivíduo público = 1 mSv/ano
-----
15) O órgão público responsável pela fiscalização da energia nuclear é o CNEN – Companhia Nacional de Energia Nuclear.
-----
16) Os efeitos biológicos são os efeitos que a radiação causa no corpo do ser humano.
-----
17) Efeitos determinísticos são causados por irradiação num tecido num tecido, ocasionando um grau de morte celular sem reposição e com prejuízos detectáveis ao órgão atingido. É chamado de determinístico porque a morte das células ocorrerá a partir de uma dose pré-determinada.
-----
18) Efeitos estocásticos, também chamados de probabilísticos, são aqueles que podem ser medidos a partir de um grupo de pessoas irradiadas, que tomaram certa dose de radiação e têm probabilidade de desenvolver um câncer radio induzido.
-----
19) Os efeitos somáticos são aqueles resultantes de um conjunto de fatores sobre a pessoa irradiada. Esses efeitos dependem da dose absorvida, da taxa de absorção e da região e da área do corpo irradiada.
-----
20) Efeitos genéticos são aqueles que surgem no descendente da pessoa irradiada como resultado do dano produzido pela irradiação nas gónadas.
-----
21) Dosímetro, pulseira dosimétrica, caneta dosimétrica, avental de chumbo, protetor genital, protetor de tireóide.
-----
22) O dosímetro mede a radiação que o técnico recebe com a proteção. O avental de chumbo protege da radiação que o indivíduo recebe.
-----
23) KV = E x 2 + K
KV = 28 x 2 + 32 = 88
-----
24) mAs = mA x t
mAs = 150 x 0,25 = 37,5
-----
25) mAs = (D2)2 / (D1)2
mAs = 75 x 75 / 1,5 x 1,5 = 25

Questões Relevantes a Radiologia (1ª)

01. Quem foi Wilhelm Roentgen?
02. Quem desenvolveu uma ampola igual a uma pêra?
03. O que aconteceu em 08 de novembro de 1895?
04. O que você entende por átomo?
05. Defina raios de frenagem.
06. Defina raios característicos.
07. Quem foi Manuel de Abreu?
08. Quem foi Henrique Dodsworth?
09. Quem foi Álvaro Alvim?
10. Quem foi José Maria Cabello?
11. Quem foi Feres Secaf?
12. Descreva o efeito Bremsstrahlung.
13. Descreva o efeito fotoelétrico.
14. O que é e quem inventou a Abreugrafia?
15. Qual a finalidade no vácuo na ampola de vidro?
16. Como são produzidos os raios-X?
17. Quem foi o primeiro a incorporar a radiologia à medicina?
18. Quem descobriu a radioatividade do tório?
19. O que são aparelhos fixos?
20. Por que a radiografia comum não é eficiente para visualizar tecidos moles?
21. O que são raios catódicos?
22. Quem foi que radiografou o caso das xilófagas e instalou o 1º aparelho de raios X?
23. Qual a velocidade da luz?
24. O que são aparelhos móveis ou transportáveis?
25. O que é efeito Compton?
26. O que é efeito Pósitron?
27. O que é radiação corpuscular?
28. O que é radiação eletromagnética?
29. No que consiste a radioatividade?
30. Qual elemento paralisa a emissão do nêutron?
31. Quais radiações são geradas por eletromagnetismo?
32. Descreva o tubo de raios X?
33. Quais os principais componentes do tubo de raios X?
34. O que é catodo?
35. O que é mA?
36. Como é produzido o foco fino e o foco grosso?
37. Quando cada foco é utilizado?
38. O que é KV?
39. Qual a diferença entre partícula e radiação Alfa e Beta?
40. O que é Goniômetro?
41. O que é Espessômetro?
42. Caracterize o Vidro pirex da ampola?
43. Como é expressa a composição do vidro pirex?
44. Qual a composição química da janela da ampola de vidro?
45. Qual a origem dos raios X e como se propaga a radiação?
46. O que pode causar falhas no tubo de raios X?
47. O que é efeito anódio?
48. Qual o procedimento para se obter uma maior qualidade técnica no exame radiológico?
49. Qual o fundamento da borda inclinada do anodo?
50. Qual a finalidade do isolamento do cabeçote (tubo)?
51. Qual a vantagem do isolamento do tubo?
52. O que é efeito talão?
53. No que consiste o gerador de RX?
54. Explique o Efeito de Edison.
55. Como os elétrons interagem com o alvo?
56. Defina Efeito Forest.
57. Correlacione força do ponto focal e a capacidade de carga do gerador RX.
58. O que é um transformador?
59. Como o Como o transformador opera?
60. Qual a função do transformador?
61. Como se classificam os transformadores?
62. O que é radiação dispersa?
63. Como se forma a imagem radiológica?
64. Como os RX atuam nos átomos dos objetos?
65. O que são raios primários?
66. O que são raios secundários?
67. Quais são as fontes de radiação dispersa?
68. Como podemos fazer a redução da radiação dispersa?
69. O que é spott filme?
70. O que é diafragma?
71. O que significa desenfoque da grade?
72. O que significa Potter Bucky?
73. O que são grades?
74. O que é material espaçador?
75. Como pode ser feito esse material espaçador?

Respostas:

1) Wilhelm Roentgen descobriu os raios X.

2) A ampola na forma de pêra foi desenvolvida por William Crookes.

3) Roentgen pesquisava o tubo de raios catódicos e percebeu um efeito luminoso numa placa de material fluorescente de cianeto de bário. A partir desse efeito, descobriu os raios X.

4) O átomo é a menor partícula da matéria e é formado por prótons, nêutrons e elétrons.

5) Os raios de frenagem são resultantes da interação do elétron de um átomo com o núcleo de outro átomo; ou seja, é quando os elétrons de um átomo se chocam com os prótons de outro átomo, gerando energia, alta, baixa e fótons (os raios X).

6) Os raios característicos são resultantes de saltos orbitais dos elétrons nas diferentes camadas da eletrosfera.

7) Manuel de Abreu foi o criador da abreugrafia, que é um exame radiológico do pulmão.

8) Henrique Dodsworth foi o primeiro a incorporar a radiologia à clínica e que afirmou que os raios X não erram. Quem erra é o médico, que não sabe interpretar.

9) Álvaro Alvim foi o primeiro a instalar um aparelho de raios X no Rio de Janeiro e a radiografar o caso de xilófagas no mundo.

10) José Maria Cabello foi professor de radiologia da Casa de São Paulo e o primeiro Presidente do Colégio Brasileiro de Radiologia.

11) Feres Secaf foi professor da Escola Paulista de Medicina e Ex-Presidente do Colégio Brasileiro e da Sociedade Paulista de Radiologia.

12) O efeito de Bremsstrahlung ocorre quando um elétron acelerado tem a sua trajetória repentinamente frenada devido ao efeito da positividade do núcleo atômico.

13) O efeito fotoelétrico é um processo pelos quais os elétrons de condução em metais e em outras substâncias absorvem energia do campo eletromagnético e escapam da substância.

14) A abreugrafia foi inventada por Manuel de Abreu e consiste num tipo de radiografia que registra a fotografia da imagem do tórax na tela radioscópica.

15) O vácuo na ampola de vidro tem pó objetivo impedir qualquer tipo de bloqueio no trajeto dos elétrons até o anodo para gerar os raios X.

16) Os raios X são produzidos a partir da desaceleração do elétron em sua trajetória devido à positividade do núcleo do átomo. Uma parte da energia cinética torna-se energia alta, outra parte torna-se energia baixa e a energia residual produz os raios X.

17) O primeiro a incorporar a radiologia à clínica médica foi Henrique Toledo Dodsworth.

18) A descoberta da radioatividade do Tório é mérito do casal Pierre e Marie Curie.

19) Aparelhos fixos são aqueles que possuem o anodo giratório. Exemplo: aparelhos de exames ambulatoriais.

20) A radiografia não é eficiente para visualizar tecidos moles porque estes deixam a radiação passar quase que completamente e não criam bons contrastes. Para este tipo de exame, o melhor método é a tomografia computadorizada.

21) Os raios catódicos são os elétrons em seus níveis orbitais. Eles dão origem aos raios X.

22) O primeiro a radiografar as xilófagas e a instalar o primeiro aparelho de raios X foi Álvaro Alvim.

23) A luz tem uma velocidade em torno de 300.000km/segundo.

24) Os aparelhos móveis ou transportáveis são aqueles cujo anodo é fixo. Exemplo: aparelhos usados em exames de CTI e Centro Cirúrgico.

25) O efeito Compton é o fenômeno que ocorre no átomo, onde um elétron passa parte de sua energia para outro elétron.

26) O efeito Pósitron é o fenômeno que explica a transformação de um elétron em 2 cátions e 1 ânion.

27) Radiação corpuscular é toda aquela que é gerada a partir do núcleo do átomo; também chamada de radiação nuclear. Um exemplo são as radiações alfa e beta.

28) Radiação eletromagnética é toda aquela que é produzida a partir de ondas eletromagnéticas. Um exemplo são as radiações gama e os raios X.

29) Radioatividade é a geração de radiação ou energia nuclear a partir do choque entre os átomos.

30) O elemento paralisador da emissão de nêutrons é a água.

31) As radiações geradas por eletromagnetismos são as energias gama e os raios X.

32) O tubo de raios X é um diodo de alta tensão e alto vácuo.

33) Os componentes do tubo de raios X são: catodo, anodo, tubo de vidro (ampola), rotor (tubo giratório) e o cabeçote (carcaça do tubo).

34) O catodo é a fonte de elétrons livres em um tubo de RX, com um filamento, que é feito de tungstênio.

35) O mA é a medida responsável pela corrente do aparelho.

36) Os focos são produzidos a partir de um circuito de baixa voltagem, gerador de tensão que provê a corrente para o filamento; Este filamento é aquecido até 280ºC; isso faz com que aumente a velocidade dos elétrons, fazendo-os escapar de suas órbitas, transformando-os numa nuvem de elétrons livres; a partir daí, são montados 2 filamentos diferentes: o foco grosso e o foco fino.

37) O foco grosso é utilizado para curtas exposições e imagens de baixa resolução (ossos). O foco fino é utilizado para imagens de alta resolução (órgãos).

38) KV é a medida de energia utilizada para a realização de um exame radiológico, em kilovolts.

39) Não há diferenças entre partículas e radiação alfa e beta.

40) Goniômetro é um aparelho que tem a função de encontrar os graus, em ângulos, para o exame radiológico.

41) Espessômetro é uma peça que tem a função de determinar a quantidade de KV a ser utilizada num exame radiológico.

42) O vidro pirex resiste a altas temperaturas, sua composição = 67% de SiC e 23% de B2O3, a ampola tem uma janela composta de Berílio.

43) A composição do vidro pirex é: 67% de SiC e 23% de B2O3, onde Si = silício, C = carbono, B = berílio, O = oxigênio.

44) A janela de vidro é composta de Silício, carbono, berílio e oxigênio.

45) Os raios X se originam no foco anódio e se projetam em todas as direções. A radiação que sai do cabeçote espalha-se por áreas.

46) Todas as possíveis falhas estão relacionadas com a característica do tubo: quando a temperatura do anodo é muito alta, ocorrem perfurações no anodo; pode haver também a inutilização do anodo durante elevadas exposições. É necessário utilizar o óleo isolante térmico.

47) O efeito anódio consiste na maior concentração de energia no lado do catodo. Como conseqüência, a intensidade dos raios X no lado catódico é menor do que no lado anódico.

48) Para que haja maior qualidade técnica do exame radiológico é necessário: a) colimação precisa da região a ser radiografada; b) aumentar o KV para exames no bucky; c) manter o mAs para não expor o paciente.

49) A borda inclinada do anodo serve para gerar o efeito anódio.

50) O isolamento do cabeçote garante uma maior vida útil da ampola. Além disso, proteger o técnico da radiação.

51) O óleo é um isolante térmico que fica na parte externa do tubo de raios X. Ele quebra a estabilidade da corrente e resfria o tubo.

52) Efeito talão é o mesmo que efeito anódio.

53) O gerador de raios X fornece energia elétrica para o tubo e permite a seleção de mA (energia dos RX), KVp (quantidade de RX) e mAs (tempo de exposição).

54) Os RX são produzidos quando elétrons acelerados interagem com a matéria. Assim, uma porção de energia cinética dos elétrons é convertida em radiação eletromagnética.

55) O efeito Edison é o aquecimento que causa a emissão de um elétron.

56) Eles interagem com o alvo através de uma porção de energia cinética dos elétrons, convertida em energia eletromagnética.

57) O efeito Forest é a aceleração dos elétrons pela grande potência do catodo (pólo negativo) para o anodo (pólo positivo).

58) A seleção da força do ponto focal e a capacidade de carga do gerador de RX devem ser igualadas às necessidades clínicas da imagem.

59) O transformador é um aparelho empregado para transferir a corrente elétrica e gerar uma alta voltagem contínua.

60) Eles operam apenas com correntes elétricas e em forma de ondas para ambos os lados.

61) A função do transformador é gerar uma alta voltagem contínua.

62) Os transformadores são classificados em:
- elevadores: têm enrolamentos na bobina secundária e
aumentam a voltagem de saída.
- isoladores: têm o mesmo número de enrolamentos nas bobinas
primária e secundária.
- redutores: têm uma proporção maior em enrolamentos nas
bobinas e têm a função de reduzir a voltagem de saída.

63) Radiação dispersa é o mesmo que radiação secundária, que é formada pelos raios que não atravessam o objeto radiografado.

64) Quando os raios X se chocam contra o objeto, alguns atravessam e outros são absorvidos. Os raios que atravessam irão formar a imagem radiológica.

65) Os raios primários são aqueles que atravessam o objeto radiografado e formam a imagem radiológica.

66) Os raios secundários são aqueles que não atravessam o objeto a ser radiografado e sim absorvidos pela matéria ou dissipados pelo meio ambiente.

67) A principal fonte de radiação dispersa é a parte do paciente que se irradia, pois se relaciona diretamente com o volume de matéria irradiada.

68) Podemos reduzir a radiação dispersa através do limite do feixe primário, que deve estar o tamanho e forma da área de interesse a ser diagnosticada.

69) O spott filme abrange uma área pequena na qual o técnico irá demarcar uma parte precisa a ser trabalhada.

70) Diafragma consiste em lâminas de chumbo com aberturas circulares ou retangulares colocadas perto da janela do tubo.

71) Desenfoque de grade consiste no posicionamento onde o ponto focal do tubo coincida com o ponto focal da grade e que seu raio central atravesse o centro da grade perpendicularmente.

72) Potter Bucky é uma bandeja que ajuda a dissipar a radiação secundária.

73) As grades consistem num dispositivo composto de tiras alternadas de chumbo, envolvidas em capas protetoras, que absorvem a radiação dispersa.

74) O material espaçador é útil para uma baixa absorção de raios X. Os espaçadores transparentes permitem a passagem da maioria dos RX primários até o filme.

75) O material espaçador pode ser de fibra ou de alumínio.


Fonte: http://www.radiologia-para-estudantes.blogspot.com/

Corrente mAs; Tensão kV e Formação da Imagem(3ª)

Corrente mA:
É responsável pela corrente do aparelho. A corrente mAs: Fator radiográfico que representa a quantidade de raios-x, sendo também responsável pelos contrastes fortes (PRETO e BRANCO). Essa quantidade depende do Tempo usado, pois o aumento de um pode ser compensado com a diminuição do outro, daí o termo mAs (mA x tempo). O mA depende do aquecimento fornecido ao CATÓDIO (-), pois quanto maior for o aquecimento, maior será a quantidade de elétrons flutuando sobre o catódio, ou seja, maior será a nuvem eletrônica que será projetada para a superfície do ANÓDIO, produzindo assim maior quantidade de raios-x. A corrente não é calculada e sim calibrada na mesa de comando.
Tensão KV:

É a medida de energia, medida em quilovolts. A tensão (kV): Fator radiográfico que representa a qualidade dos raios-x, sendo também responsável pelo poder de penetração dos raios-x e pelos contrastes intermediários entre o PRETO e o BRANCO (tons de Cinza). OBS: Quanto mais kV empregado, maior será o poder de penetração, ou seja, nos exames de maior espessura a radiação secundária produzida é proporcional a quilovoltagem empregada.
Produção de Foco Fino e Foco Grosso:
É feita a partir de um circuito de baixa voltagem, gerador de tensão, que provê a corrente para o filamento; Este é aquecido até 280ºC, fazendo com que aumente a velocidade dos elétrons e, conseqüentemente, escapem de suas órbitas, transformando-os numa nuvem de elétrons livres; a partir daí, são montados 2 filamentos de tamanhos diferentes: O foco grosso (para baixas definições - osso) e o foco fino (para altas resoluções - órgão e tecidos moles em geral).
Goniômetro:
É um aparelho que tem a função de encontrar os graus, em ângulos, para o exame radiológico.
Espessômetro:
É uma peça que tem a função de determinar a quantidade de KV a ser utilizada num exame radiológico.
Vidro Pirex:

Resiste a altas temperaturas, sua composição = 67% de SiC (silício e carbono) e 23% B2O3 (belírio e oxigênio). A ampola tem, ainda, uma janela feita de Belírio.
Origem dos Raios X:
Os raios X se originam no foco anódico e se projetam em todas as direções. A radiação que sai do cabeçote espalha-se por áreas.
Possíveis Falhas no Tubo de Raios X:
- Temperaturas muito altas acarretam em perfurações no anodo;
- Elevadas exposições acarretam inutilização do anodo.
Efeito Anódio:
Consiste na maior concentração de energia no lado do catodo. Como conseqüência, a intensidade dos raios X é menor no lado catódico, em relação ao lado anódico. É também chamado de efeito talão.
Procedimento para Aumentar a Capacidade Técnica de um Exame Radiológico:
- colimação precisa na região radiografada;
- aumento do KV para exames no Bucky;
- Manutenção do mAs para não exposição do paciente.
Inclinação da Borda do Anodo:
Sua utilidade é a geração do efeito anódio.
Finalidade do Isolamento do Cabeçote:
Garantia de uma maior vida útil da ampola, além da proteção do técnico de radiologia dos efeitos da radiação.
Vantagem do Isolamento do Cabeçote:
Sendo o óleo um isolante térmico que fica na parte externa do tubo de Raios X, há uma quebra de estabilidade da corrente e o conseqüente resfriamento do tubo, prolongando sua vida útil.
Gerador de Raios X:
O gerador de raios X fornece energia elétrica para o tubo de Raios X e permite a seleção de:
- mA = energia de raios X;
- KVp = quantidade de raios X;
- mAs = tempo de exposição.
Produção de Raios X:
São produzidos quando os elétrons acelerados interagem com a matéria. Assim, uma porção de energia cinética dos elétrons é convertida em radiação eletromagnética.
Efeito Edison:
É o aquecimento que causa a emissão de um elétron. Este aquecimento é que causa a precipitação dos elétrons e os fazem saltar de suas órbitas.
Interação dos Elétrons e da Matéria:
Eles interagem com o alvo através de uma porção de energia cinética dos elétrons, que é convertida em energia eletromagnética.
Efeito Forest:
É a aceleração dos elétrons pela grande potência do catodo (pólo negativo) para o anodo (pólo positivo).
Relação entre Ponto Focal e Capacidade de Carga do Gerador:
A seleção da força do ponto focal e a capacidade de carga do gerador de Raios X devem ser igualadas com as necessidades clínicas da imagem.
Transformador:
É um aparelho empregado para transferir a corrente elétrica e gerar uma alta voltagem contínua. Ele opera apenas com correntes elétricas e em forma de ondas para ambos os lados. Sua função é gerar uma alta voltagem contínua.
Classificação dos Transformadores:
- elevadores = têm rolamentos na bobina secundária e aumentam a voltagem de saída.
- isoladores = têm o mesmo número de rolamentos nas bobinas primária e secundária.
- redutores = têm uma proporção maior em rolamentos nas bobinas e têm a função de reduzir a voltagem de saída.
Radiação Dispersa:
É o mesmo que radiação secundária, formada pelos raios que não atravessam o objeto radiografado.
Formação da Imagem Radiológica:
Quando os raios X se chocam contra o objeto, alguns atravessam e outros são absorvidos. Os raios que atravessam irão formar a imagem radiológica.
Atuação dos Raios X nos átomos dos objetos:

Existem 2 formas de interação. Ora depositam sua energia no material radiografado; ora atravessam o objeto a ser examinado.
Raios Primários:
São aqueles que atravessam o objeto radiografado e vão formar a imagem radiológica.
Raios Secundários:
São aqueles que não atravessam o objeto radiografado.
Fonte de Radiação Dispersa:
A principal fonte de radiação dispersa é a parte do paciente que se irradia, pois se relaciona diretamente com o volume da matéria irradiada.
Redução da Radiação Dispersa:
Pode-se reduzir a radiação dispersa através do limite do feixe primário, que deve estar no limite (tamanho e forma) da área de interesse a ser diagnosticada.
Spott Filme:
Abrange uma área pequena, na qual o técnico irá demarcar uma parte precisa a ser trabalhada. Sua função é radiografar uma área pequena em relação ao exame solicitado, ou seja, especificar ao máximo a área do exame.
Diafragma de Abertura:
Consiste em lâminas de chumbo com aberturas circulares ou retangulares colocadas perto da janela do tubo.
Desenfoque da Grade:
Consiste no posicionamento onde o ponto focal do tubo coincida com o ponto focal da grade; e que seu raio central atravesse o centro da grade perpendicularmente.
Potter Bucky:
É a bandeja que dissipa a radiação secundária. Ela é usada para aumentar a radiação primária emitida pela fonte.
Índice ou Razão de Grade:
É a relação entre a altura das tiras de chumbo e a largura dos espaçadores.
Grades:
São dispositivos compostos de tiras alternadas de chumbo, envolvidas em capas protetoras, que absorvem a radiação dispersa. No uso de uma grade, os itens a serem observados são: ampola, grade, paciente, distância, velocidade, movimento.
Grade Focada:
Consiste em tiras progressivamente anguladas.
Grade Paralela:
Consiste em tiras e grade paralela e enfocada.
Fator de Grade:
É a relação entre a altura da lâmina e a distância entre elas.
Material Espaçador:
É um material que pode ser feito de fibra ou de alumínio para uma baixa absorção de raios X. Os espaçadores transparentes permitem a passagem da maioria dos raios X primários até o filme.
Os Raios X e a Radiação Secundária:
Quando os raios X incidem sobre um objeto, a radiação secundária é maior quanto maior for a densidade do corpo atravessado.
FORMAÇÃO DE IMAGEM
Os raios X, assim como a luz visível, irradiam de fontes em linhas retas em todas as direções até que são detidos por um absorvente. Por este motivo, o tubo de raio-x está situado em um alojamento de metal que detém a maioria da radiação X. Somente uma pequena quantidade de raios úteis saem do tubo através de uma janela ou abertura. Estes raios úteis constituem o feixe primário. O centro geométrico do feixe primário é chamado de raio central. Na maioria dos equipamentos de raio X usados em medicina, a quilovoltagem pode ser variada dentro de um amplo - comumente entre 40 Kv a 125 Kv ou mais. Quando as baixas quilovoltagens são usadas, os raios x têm maiores comprimento de ondas (baixa energia) e são facilmente absolvidos. Estes são algumas vezes referidos como raios X "suaves". As radiações produzidas em alta quilovoltagem têm maior energia e menor comprimento de onda. Esta radiação mais penetrante é algumas vezes chamada de radiação "dura". Feixes de raio X usados em radiografia médica são heterogêneos porque eles consistem de radiação de diferentes comprimentos de ondas e poderes de penetração.
ABSORÇÃO DE RAIOS X
Uma das principais propriedades dos raios X é a sua capacidade de penetrar a matéria. Entretanto, nem todos os raios X que entram na matéria a penetram; alguns deles são absolvidos. Aqueles que entram formam a imagem aérea
FATORES QUE AFETAM A ABSORÇÃO DE RAIOS X
Estes são alguns dos fatores que influenciam na absorção da radiação X: espessura do corpo, densidade do corpo, número atômico do corpo, meios de contraste, kilovoltagem, forma de onda de voltagem, filtragem, composição do ponto focal.
Espessura do corpo - A relação entre a absorção de raio X e a espessura é intuitivamente óbvia: um pedação de material grosso absorve mais radiação X do que um pedaço fino do mesmo material. Por exemplo, seis polegadas de água absorvem mais raios X do que uma polegada.
Densidade do Corpo - Para materiais que diferem em densidades (em unidade de volume), um material de maior densidade é mais absorvente do que um de menor densidade, permanecendo os demais fatores. Por exemplo, uma polegada de água absorverá mais raios X do que uma polegada de vapor porque o vapor pesa menos por polegada cúbida do que a água.
Número Atômico do Corpo - O número atômico do material que compõe o corpo também afeta as características de absorção de raio X. Por exemplo, uma folha de alumínio que contém um número atômico menor do que o chumbo, absorve uma quantidade menor de raios X do que uma folha de chumbo com a mesma área e peso. É por isso que se usa o chumbo em vez de alumínio como alojamento do tubo e também como um revestimento para as paredes das salas de raio X, assim como em luvas e aventais protetores. A absorção depende do número atômico de maneira um tanto complicada que está relacionada com a energia da radiação X incidente. Assim, de duas substâncias que contêm um número atômico próximo, uma pode ser mais absorvente do a outra para raios X de determinadas energias. Entretanto, a situação pode se reverter para raios X de energias diferentes. Estas relações entre o número atômico e a energia dos raios X são fatores que entram na seleção de fósforo para ecrans intensificadores fluorescente.
Meios de Contraste - Com o objetivo de acentuar as diferenças de absorção entre as estruturas do corpo e as regiões ao redor das mesmas, algumas vezes, meios de contraste são introduzidos a estas estruturas. Meios de contrastes são substâncias que diferem em densidade e número atômico dos tecidos ao redor da região na qual eles são introduzidos. Algumas das substâncias mais comuns usadas como meios de contrastes são: suspensões aquosa de sulfato de bário, compostos orgânicos líquidos contendo iodo e gases, tais como o ar ou o dióxido de carbono. O sulfato de bário ou o ar é usado para realçar o trato gastrointestinal. Os vários compostos de iodo têm muitos usos, entre eles a radiografia dos sistemas vascular, urinário, linfático, ou respiratório, e o canal vertebral.Substâncias tais como o sulfato de bário, as quais absorvem mais radiação do que a área ao seu redor são conhecidas como radiopaco. Aquelas tais como o ar, que são menos absorventes do que os tecidos adjacentes, são conhecidos como radiolucente.
Kilovoltagem - Raios X produzidos a baixas kilovoltagens, isto é, aqueles com grande comprimento de onda - são facilmente absorvidos. Raios X de alta energia ou kilovoltagem, com curto comprimento de onda, penetram materiais com mais facilidade.
Forma de Onda de Voltagem - Já foi dito que uma dada kilovoltagem aplicada em um tubo de raios X por um gerador trifásico é maior do que a de um gerador monofásico por causa das diferenças de forma de onda. Assim, mudando-se de um gerador monofásico a um trifásico tem um efeito na energia média do feixe de raios X de certa forma semelhante ao aumento da quilovoltagem. O feixe trifásico contém uma maior proporção de quanta energética e mais penetrante do que o feixe produzido por um gerador monofásico funcionando com a mesma kilovoltagem máxima. Como resultado, para um absorvente, um número relativamente maior de quanta é removida de um feixe de raio X monofásico do que de um trifásico; isto é, a absorção em feixe monofásico é maior.
Filtragem - Filtragem é a maneira preferida de se remover quanta (fótons) de baixa energia do feixe de raios X através de um absorvente (filtro). Denomina-se filtragem inerente aquela que é feita com elementos tais como a parede de vidro do tubo de raios X e pelo óleo isolante ao redor do tubo. Chama-se filtragem adicional, o filtro que consiste de uma folha de metal inserida dentro do feixe de raios X (normalmente alumínio no caso de radiografia médica). A filtragem total do feixe (inerente mais a adicionada) é muitas vezes especificada em termos de espessura de alumínio o qual produz a mesma absorção e é denominado de alumínio equivalente ou espessura equivalente. O feixe de raios X é composto de fótons de diferentes energias e poderes de penetração. Quando um filtro é colocado dentro de um feixe, ele elimina mais fótons de baixa energia e menos penetrantes do que os fótons de alta energia. Assim pode-se dizer que os filtros endurece o feixe de raio X, aumentando a proporção de quanta de alta energia e dando maior poder de penetração ao feixe. Mesmo em instalações de alta kilovoltagem, o feixe contém sempre alguns raios X de baixo poder de penetração, mais é pouco provável que estes raios X de baixa energia passaram pelo corpo do paciente e formarão uma imagem útil. A maioria deles irão somente adicionar-se à dose absorvida pelo paciente. Desta forma, é desejado e obrigatório pelas leis federais que certas quantias de filtragem sejam colocadas no feixe para eliminar estes raios inúteis. A quantidade de filtragem necessária depende da kilovoltagem usada. A filtragem pode ser especificada em termos de equivalente de alumínio (a espessura do alumínio que produziria a mesma ação de filtragem) ou em termos de camadas de meio de valor (CMV) - quer dizer, a espessura do material necessários para reduzir a intensidade do feixe pela metade do seu valor original. As agências federais , e estaduais de regulamentos e os fabricantes de equipamentos podem fornecer maiores informações a respeito dos requerimentos de filtragem.
Composição do Ponto Focal - A distribuição de energia - quer dizer, a quantia relativa de radiação de baixa e alta energia - no feixe de raio X é também afetada pelo material que compõe o ponto focal. Como já notamos, na maioria das aplicações médicas, o ponto focal do tubo de raios X é composto de tungstênio ou uma liga de rênio e tungstênio. Para algumas aplicações especiais, por exemplo a mamografia, usa-se às vezes outros materiais tais como o molibdênio. Em um dado equipamento, o feixe de raios X produzido em um ponto focal de molibdênio contém uma maior porcentagem de fótons de baixa energia, facilmente absorvidos, do que um feixe de um ponto focal de tungstênio.
ABSORÇÃO DIFERENCIAL NO CORPO HUMANO
Em se considerando as aplicações médicas dos raios X, deve-se levar em conta que o corpo humano é uma estrutura complexa constituída não somente de diferentes espessuras mas também de diferentes matérias. Estas matérias absorvem os raios X em graus variáveis. Por exemplo, o osso contém elementos de número atômico maior do que o tecido macio e também a sua densidade é de certa forma maior do que o tecido macio. Por isso, o osso absorve mais raios X do que o tecido macio. Além do mais, estruturas doentes mais vezes absorvem raios X de forma diferente que os ossos e a carne normais. A idade do paciente também pode ter alguma influência na absorção. Em pessoas idosas, os ossos podem ter menor quantidade de cálcio, e por isso ter menor absorção de raios X do que em jovens. Deve-se lembrar também que a diferença na absorção do osso e do tecido macio é também alterada pela kilovoltagem usada para fazer a radiografia. Conforme a kilovoltagem aumenta, a diferença na absorção do osso e do tecido diminui. Conforme o feixe de raios X emerge do corpo, diferentes áreas do feixe contém diferentes intensidades de radiação. Este tipo de intensidade resulta das diferenças em absorção que ocorrem quando o feixe passa através do corpo. Este padrão invisível ou distribuição de intensidades de raios X no espaço é referido como imagem aérea ou imagem no espaço para distingüi-la da imagem radiográfica. Considere, por exemplo, as intensidades de raios X que emergem de uma parte do corpo que consiste de osso rodeado por tecido macio. Por causa de seu número atômico e densidade maior, o osso é mais absorvente do que a carne ao redor, conseqüentemente, a intensidade do feixe através do osso é menor do que a intensidade do feixe através do tecido macio sozinho.
CONTRASTE DO SUJEITO
A relação entre intensidade de raios X que emerge de uma parte de um objeto e uma intensidade que emerge de uma parte próxima mais absorvente é chamada de constraste do sujeito ou da radiação. Por exemplo, se a intensidade da carne for três vezes maior do que a intensidade na área do osso, o contraste do sujeito deverá ser 3. O contraste do sujeito depende de sua própria natureza (diferença de espessura, e de composição), qualidade da radiação, (kilovoltagem, voltagem da forma de onde, filtragem e material do ponto focal), em outras palavras, ele depende dos fatores que afetam a absorção dos raios X, assim como também a intensidade e distribuição da radiação dispersa. Entretanto, o contraste do sujeito é independente do tempo de exposição, miliamperagem, das características e tratamento do filme e, para os objetivos práticos, da distância. (De um ponto de vista prático, a miliamperagem usada pode afetar a kilovoltagem real produzida por um aparelho de raios X, assim, influenciando até certo ponto o contraste do sujeiro.)
FATORES DE EXPOSIÇÃO QUE AFETAM A IMAGEM AÉREA
Alguns fatores de exposição que afetam a imagem aérea (isto é, o padrão de intensidade de raios X que emerge do corpo) são : miliamperagem, distância, kilovoltagem e forma de onda de voltagem.
Miliamperagem - Aumentando-se a miliamperagem aumenta-se a intensidade de raios X, e diminuindo a miliamperagem diminui-se a intensidade de raios X. Desta forma, conforme a miliamperagem ou a intensidade da radiação X do ponto focal aumenta, todas as intensidades correspondentes ao padrão que emergem do corpo também aumentam, isto é, as diversas intensidades de raios X continuam a manter a mesma relação entre si. Por exemplo, consideraremos que no inicio são medidas três unidades de intensidade de raios X sob a carne, e somente uma unidade emerge sob o osso. Depois consideraremos que a miliamperagem que flui através do tubo de raios X seja dobrada, resultando em uma duplicidade da produção do raio X. Isto por sua vez dobra as intensidades que emergem da carne somente em seus unidades e sob o osso em duas unidades, mantendo uma relação de 3:1 em contraste do sujeito, a mesma que antes da miliamperagem ter sido dobrada. Em outras palavras a intensidade sob a carne somente vai ser sempre três vezes maior do que a sob o osso, não importa se a miliamperagem seja aumentada ou diminuida, permanecendo os demais fatores.
Distância - As intensidades de raios X na imagem aérea podem também ser alteradas uniformemente de outra forma: colocando o tubo longe ou perto do objeto. Em outras palavras, a distância entre o tubo e o objeto tem um efeito na intensidade da imagem. Isto pode ser facilmente demonstrado: num quarto escuro, coloque uma lanterna a pelha perto desta página; quanto mais perto do livro está a luz, mais claramente iluminada é a página. Exatamente o mesmo processo ocorre com os raios X. Conforme a distancia entre o objeto e a fonte de radiação diminue, a intensidade de raios X no objeto aumenta, e conforme a distancia aumenta, a intensidade da radiação no objeto diminui. Tudo isto acontece devido ao fato de que tantos os raios X quanto a luz viajam em linhas retas divergentes. O efeito da mudança na distância é similar ao da mudaça da miliamperagem. Em outras palavras, o contraste do sujeito não é afetado pelas mudanças nas distâncias. Deve-se mencionar que em se mudando a distância, deve-se considerar o efeito que isto pode ter na borrosidade da imagem e em exposiçao não qual se usa uma grade difusora para reduzir a dispersão de radiação. Pode-se calcular aritiméticamente a quantia da intensidade geral da imagem quando se modifica a miliamperagem ou distância.
Kilovoltagem e Forma de Onda da Voltagem - Previamente foi demonstrado que por causa das diferenças na forma de onda da voltagem, o efeito da mudança de um gerador monofásico a um trifásico é a mesma que um aumento na kilovoltagem e vice-versa. Desta forma, o efeito nas mudanças de forma de onda no contraste do sujeito e na intensidade, energia e poder de penetração dos raios X é similar às mudanças em kilovoltagem tratadas a seguir. Uma mudança na kilovoltagem causa diversos efeitos. Em primeiro lugar, uma mudança na kilovoltagem resulta em uma mudança no poder de penetração dos raios X, e a intensidade total do feixe também é modificada. Esta mudança na intensidade ocorre mesmo que a corrente do tubo não seja alterada. Além do mais, mudando-se a kilovoltagem, muda-se também o contraste do sujeito. Quanto a kilovoltagem é incremetada produz-se radiação com menor comprimento de onda e raios X mais penetrantes são produzidos. (O poder de penetração de feixe aumenta). Também, todos os comprimentos de onda presentes no feixe de baixa kilovoltagem estão presentes na alta kilovoltagem e em intensidade muito maior (a intensidade total do feixe aumenta). Resumo - Com o propósito de revisar os fatores de exposição que afetam a imagem aérea, deve-se lembrar os seguintes pontos:
1. A intensidade da imagem aérea é afetada por quatro fatores : miliamperagem, distância, kilovoltagem e forma de onda.
2. Quando a miliamperagem ou distância é usada como um fator de controle de intensidade, o contraste do sujeito não é afetado.
3. Quando a kilovoltagem ou forma de onda é modificada, altera-se não somente a intensidade dos raios X, mas também o contraste do sujeito. Aumentando-se a kilovoltagem ou mudando-se de um gerador monofásico a um trifásico diminue o contraste do sujeito; diminuindo-se a kilovoltagem ou mudando-se de um gerador trifásico para um monofásico aumenta-se o contraste do sujeito.
EFEITO DE TALÃO (efeito anódico)
Até este ponto assumiu-se que a intensidade de radiação na totalidade da área coberta pelo feixe que entra no paciente é constante. Isto não é verdade. Na realidade, há uma variação na intensidade devido ao ângulo no qual os raios X emergem a partir do material do ponto focal . Aqueles raios X que viajam em ângulos quase paralelos da face do ponto focal tendem a ter trajetos maiores, mais absorventes no material do ponto focal e também tem mais probabilidades de serem bloqueados por irregularidades da superfície do que a radiação que emerge em ângulos maiores da face do ponto focal. Esta variação em intensidade através do feixe dos raios X associada com o ângulo da emissão dos raios X do ponto focal é chamada de efeito de talão (efeito anódico). A intensidade do feixe diminue bastante a partir do raio central em direção ao extremo anódico do tubo e aumenta levemente em direção ao extremo catódico. O efeito de talão , efeito anódico, aumenta conforme o ângulo do ânodo diminui. O efeito de talão pode ser usado para obter densidade equilibradas em radiografias das partes do corpo que diferem em absorção. Por exemplo, em radiografias das vértebras torácicas, a área cervical fina deve receber a menor intensidade de radiação da porção do ânodo do feixe enquanto que a área grossa do peito deve ser exposto a uma radiação mais intensa da porção do cátodo do feixe. Devido a intensidade do feixe de raios X ser mais uniforme perto do raio central, o efeito de talão é menos notado quando só se usa a porção central do feixe, Este seria o caso quando a distância do receptor de fonte-imagem (SID), quer dizer, a distancia do ponto de foco-filme, é maior ou quando dispositivos limitadores de feixe reduzem a área do feixe de raios x, por exemplo, quando se expõe um filme pequeno.
Filtros de Espessura Variável - Deve-se mencionar um outro método de se obter densidades equilibradas em radiografia: o uso de filtros de espessura variável. Se colocar-mos um filtro cuneiforme ou afilado dentro do feixe de raios X, ele produzirá uma maior redução na intensidade sob a extremidade grossa do que sob a extremidade fina. Esta mudança na distribuição de intensidade pode ser usada para obter densidades equilibradas em radiografias de estruturas anatômicas as quais variam em espessura, tais como o pé ou o peito. Isto se obtém através da orientação adequada do filtro com respeito à estrutura.
Geometria da Formação de Imagem - O objetivo de uma radiografia é o de obter imagens as mais exatas quanto possível. Os dois fatores que afetam esta nitidez são o grau de borrosidade e o tamanho da imagem.
Borrosidade Geométrica e Amplificação - Pegue uma lâmpada pequena, clara tal como a de 7 watts e coloque-a a uns 90 centímetros da parende, acenda-a e coloque sua mão a ums 5 centímetros da parede. Note que a sombra produzida por esta pequena fonte de luz é quase que do mesmo tamanhoda sua mão e que os contornos são bem definidos. Agora mova sua mão em direção à luz, observe como a sombra se torna maior e os contornas mais turvos. Em seguida, substitua a pequena luz por um bulbo fosco e note que os contornos da sombra ficam um pouco turvo mesmo quando sua mão está perto da parede. A borrosidade é causada por uma fonte de luz maior. Novamente, mova sua mão em direção à luz e veja como a sombra se torna maior e a borrosidade aumenta. Finalmente, mantenha a sua mão a uma distância fixa da parede e mova a fonte de luz para perto de sua mão. Perceba como a sombra aumenta em tamanho e o seu contorno parece mais borroso. Uma vez que a imagem aérea do raio X é também uma sombra do objeto, estes mesmos princípios de formação de sombra são aplicados em radiografia. Quanto menor for a fonte de radiação (ponto focal), quanto mais perto estiver o objeto do plano receptor de imagem (filme) e quanto mais longe estiver o objeto da fonte, menos borrosa e mais nítida é a imagem. Por outro lado, quando maior a fonte de radiação, mais longe estiver o objeto do plano receptor de imagem, e mais perto da fonte estiver o objeto, maior é a borrosidade e a amplificação.
Distorção - Se o ponto focal não estiver verticalmente acima do objeto, ele produzirá uma amplificação da imagem, mas a sombra continuará sendo circular. Os objetos circulares aparecem como sombras circulares. Se eles não forem paralelos, a sombra será distorcida. A distorção e a amplificação podem muitas vezes serem úteis quando elas tornam fáceis examinar estruturas que de outra maneira seriam obscuras. Em radiografia, não somente a sombra da ponta de um objeto, mas todas as sombras das suas estruturas estão envolvidas porque os raios X penetram o objeto. Os mesmos princípios se aplicam tanto para as sombras de estruturas internas como para as bordas. Por exemplo, se uma destas estruturas internas estiver mais afastada do plano receptor de imagem do que uma outra, a estrutura que estiver mais afastada será menos nítida e mais amplificada. Esta informação pode ser útil no estabelecimento da posição de uma lesão. Resumo - Esta discussão sobre a geometria da formação da imagem pode ser resumida em cinco regras para a exata formação da imagem, como se segue:
1. O ponto focal dever ser o menor possível.
2. O receptor de imagem, filme, deve estar o mais perto possível do objeto a ser radiografado.
3. A distância entre o tubo de raios X e o objeto a ser examinado dever ser a maior possível.
4. De modo geral, o raio central deve ser perpendicular ao filme para gravar estruturas adjacentes em suas verdadeiras relações espaciais.
5. Conforme possível, o plano de interesse no objeto dever ser paralelo ao filme. Um outro fator que contribui para a borrosidade da imagem é o movimento.
Movimento - O movimento, tanto das estruturas sendo radiografadas quanto do equipamento de explosição, podem causar severa borrosidade da imagem. Quanto possível, a parte que está sendo examinada deve ser imobilizada. O tempo de exposição também dever ser o mais curto possível de maneira a diminuir a borrosidade causada pelo movimento.

Produção dos Raios X e a Radioatividade (2ª)

A Produção dos Raios X é explicada do seguinte modo: os elétrons emitidos pelo catodo são fortemente atraídos pelo anodo, e chegam a êste com grande energia cinética. Chocando-se com o anodo, êles perdem a energia cinética, e cedem energia aos elétrons que estão nos átomos do anodo. Êstes elétrons são então acelerados. E acelerados, emitem ondas eletromagnéticas que são os raios X. Já tínhamos visto, que os raios X são ondas eletromagnéticas de comprimento de onda muito pequeno.

Propriedade dos Raios X:

Sendo ondas eletromagnéticas, os raios X possuem todas as propriedades gerais dessas ondas, que o leitor já conhece para o caso da luz: sofrem reflexão, refração, interferência, difração, polarização. Propagam-se em linha reta, com velocidade igual à da luz. Tornam fluorescentes muitos corpos sobre os quais incidem, como por exemplo, platino cianureto de bário (e por esta propriedade que permitiu sua descoberta). Provocam ação química em certas substâncias. Por exemplo, impressionam chapas fotográficas. Esta propriedade é muito mais intensa nos raios X que na luz, porque, como êles têm menor comprimento de onda, têm maior energia que a luz. Êles impressionam chapas fotográficas mesmo quando elas estão protegidas por superfícies que a luz não atravessa, como por exemplo, caixas de papelão, ou papel preto, etc.. Atravessam grandes espessuras de materiais. A facilidade maior ou menor com que os raios X atravessam as substâncias depende do comprimento de onda dos raios X, da espessura da substância e do seu peso atômico. Os raios X de menor comprimento de onda, da ordem de 0,01A, têm maior facilidade para penetrar nos corpos: são chamados raios X duros. Os de maior comprimento de onda, da ordem de 1A, penetram menos nos corpos: são chamados raios X moles. Atravessam com grande facilidade as substâncias de pequeno peso atômico, como por exemplo, os elementos fundamentais dos corpos orgânicos, carbono, hidrogênio, oxigênio e nitrogênio. As substâncias pesadas são dificilmente atravessadas. Assim, o chumbo é usado frequentemente para barrar os raios X. Ionizam as moléculas dos gases por onde passam, isto é, arrancam elétrons dessas moléculas. Como são ondas eletromagnéticas, e, portanto, não têm carga elétrica, não são desviados por campo elétrico, nem por campo magnético. Os raios X são usados em medicina para radiografias e para cura de certos tumores e certas moléstias de pele.

Produção dos Raios X:

São produzidos pela desaceleração dos elétrons em sua trajetória devido à positividade do núcleo do átomo. Uma parte da energia cinética torna-se energia alta, outra parte, energia baixa, e uma outra, ainda, os fótons, que são, justamente, os raios X.

Eficiência nos Exames de Imagem:

- Para tecidos duros: As radiografias
- Para tecidos moles: As tomografias

Raios Catódicos:

São os raios resultantes dos elétrons em movimento em seus níveis orbitais. São os raios que produzem os raios X.

Velocidade dos Raios X:

- velocidade da luz = 300.000km/seg.

Efeito Compton:

É o fenômeno que ocorre no átomo onde o elétron passa parte de sua energia para outro elétron.

Efeito Pósitron:

Este fenômeno explica a transformação de um elétron em 2 catodos e 1 anodo (2E- e 1E+).

Radiação Corpuscular:

É toda radiação que é gerada a partir do núcleo do átomo; é também denominada radiação nuclear. Ex.: alfa e beta.

Radiação Eletromagnética:

É toda radiação que é gerada a partir de ondas eletromagnéticas, originárias da trajetória dos elétrons. Ex.: gama e raios X.

Radioatividade:

É a geração de radiação a partir dos choques entre os átomos, que ocorrem em sua trajetória.

Elemento Paralisador dos Nêutrons = água.

Tubo de Raios-X:

É um diodo de alta tensão e alto vácuo, composto por catodo, anodo, tubo de vidro (ampola), rotor (tubo giratório) e o cabeçote (carcaça do tubo).

Catodo:

É a fonte de elétrons livres em um tubo de RX, com um filamento que é feito de tungstênio.

Física Radiológica: Raios Catódicos (1ª)

O Termo Radiação: Vem do latim RADIARE, que indica um fenômeno básico em que a energia se propaga através do espaço, ainda que interceptada pela matéria.

O Termo Irradiação: Vem do latim IN e RADIARE, que é empregado para indicar o tratamento da matéria pela energia radiante. Os termos radiação e irradiação são todavia, na maioria das vezes confundidos e usados indistintamente como sinônimos.

Tipos de Radiação: Há as chamadas corpusculares, feitas por intermédio de elétrons (raios beta), núcleos de hélio (raios alfa), núcleos de hidrogênio (prótons; p. ou H1) ou neutrons (n ou n1); e as eletromagnéticas, constituídas pelos raios de comprimento de onda muito curto, os raios - X e os raios gama. Admite-se que a energia radiante emita partículas ínfimas denominadas Fótons. Estas são absorvidas pela matéria e determinam os seguintes fenômenos:

1) Fazem vibrar os átomos das moléculas em seu eixo de conexão;

2) Fazem-nos rodar em torno desse mesmo eixo

3) Produzem modificações dos níveis energéticos dos elétrons.

Átomo: É a menor partícula da matéria e é formado por prótons e nêutrons no núcleo; e por elétrons que circulam ao seu redor, na eletrosfera.

Raios de Frenagem: São resultantes da interação do elétron de um átomo com o núcleo de outro átomo; ou seja, é quando os elétrons se chocam com os prótons, gerando energia alta, energia baixa e fótons.

Raios Característicos: São resultantes de saltos orbitais dos elétrons nas diferentes camadas da eletrosfera, ou seja, são raios que se originam do desequilíbrio dos elétrons em suas trajetórias.

Efeito Bremsstrahlung: Ocorre quando um elétron acelerado tem a sua trajetória repentinamente frenada devido ao efeito da positividade do núcleo atômico.

Efeito Fotoelétrico: É um processo pelo qual os elétrons de condução em metais e em outras substâncias absorvem energia do campo eletromagnético e escapam das suas órbitas. É a absorção completa do Fóton com ejeção de um elétron (ionização).

Efeito Compton (irradiação secundária): Arrancamento de um elétron que continua a se propagar mas com maior comprimento de onda do que a radiação incidente.

Anodo Fixo: Consiste no aparelho transportável, geralmente utilizado em cirurgias e exames feitos no leito.

Anodo Giratório: Consiste no aparelho fixo para exames.

Aparelhos Fixos: São os aparelhos cujos discos anódicos são giratórios. São utilizados em exames de rotina em ambulatórios.

Aparelhos Móveis: São os aparelhos cujos discos anódicos são fixos. São utilizados nos exames em CTI e em Centros Cirúrgicos.

Aparelhos Portáteis: São os aparelhos cujas ampolas são feitas de anodo fixo. São utilizados em exames em domicílio.

Composição do Tubo de Raios Catódicos:

- Ampola ou Tubo de Vidro;
- Catodo;
- Anodo Fixo;
- Anodo Giratório.

Finalidade do Vácuo na Ampola de Vidro: Impedir qualquer tipo de bloqueio no trajeto dos elétrons até o anodo para gerar os raios X.

Produção de Íons Pares: O fóton vai de encontro ao núcleo, criando e emitindo um par de elétrons. A absorção da luz ultravioleta e da infravermelha depende em geral da estrutura molecular do material absorvente e, indiretamente da composição atômica do mesmo. Pelo contrário as energias dos Raios X são quase inteiramente absorvida pelos elétrons que se ejeta do átomo pelo qual eles passaram. Este processo independe completamente da maneira porque os átomos estão combinados dentro das moléculas. Assim o átomo que recebe um certo quantun de raios X para ejetar um elétron perde energia (ionização) e esta é armazenada no elétron ejetado como energia cinética, capaz de produzir ionização de outros átomos por que passa. Quase toda a ionização em radiologia, é produzida pelo elétron ejetado e muito pouco ou desapercebida é a ionização pela absorção inicial do Quantun de raios X aplicados. Em conseqüência desse fenômeno, os íons produzidos não se distribuem ao acaso nas soluções ou nos tecidos, mas sim ao longo do trajeto do elétron ejetado.


A Radiografia Convencional

Na execução de uma radiografia convencional, uma radiação inicial incide sobre a pessoa, sendo atenuada. A atenuação corresponde à densidade específica dos órgãos. Os raios X, agora com intensidade I, geram um perfil de absorção atrás do paciente, no qual é convertido em níveis de cinza no filme.

Problemas com Imagens Radiográficas:

1) Sobreposição de Imagens = Objetos de tamanhos e densidades diferentes, porém próximo entre si, causam somatório de imagens.

Imagem sem sobreposição

Imagem com sobreposição

2) Mesmo Enegrecimento de Imagens = Objeto de alta densidade e curta extensão resulta na mesma imagem de um objeto de baixa densidade e larga extensão, na direção da radiação.

3) Projeção Central = Objetos de tamanhos e densidades iguais, mas em diferentes posições, aparecem com diferentes tamanhos.

Índice remissivo:

Sobreposição de imagens: Objetos em diferentes profundidades no corpo, sobrepõem as imagens.

Mesmo Enegrecimento = Objetos de diferentes espessuras e densidades, geram a mesma imagem.

Projeção Central = Objetos de tamanhos e densidades iguais, mas em diferentes posições, geram imagens com tamanhos distorcidos.

Diferencial Cursos

A Diferencial Cursos é uma instituição voltada para qualificação profissional, oferecendo aos profissionais e estudantes uma prática constante de atualização, por intermédio de educação continuada. Também, visa disponibilizar aos participantes, acesso ao ensino de qualidade com eficácia no aprendizado e objetos de aprendizagem, que auxiliam na formação do cidadão contemporâneo, crítico e atuante na sociedade.

Nossa equipe é formada por professores na área de: Saúde, Humana, Exata, Técnica,Tecnológica e Industrial.

Temos uma equipe formada por: Odontólogos, Médicos, Enfermeiros, Psicólogos, Fisioterapeutas, Físicos, Técnicos, Tecnólogos e Profissionais da área industrial.

Acreditamos que o Educador é o grande responsável na formação da sociedade. É com esta motivação que buscamos o melhor para nosso aluno. No entanto, sabemos que a associação de teoria e prática é fundamental para uma formação completa. Por isso, nossa Instituição tem investido também em equipamentos.

Fonte:www.diferencialcursos.com.br

13 de abr. de 2011

Raios X identificam sinusite crônica na maioria das crianças

Os casos mais difíceis de rino-sinusite crônica em crianças, usualmente são avaliados pelo CT , considerado exame padrão “gold standar” para um diagnóstico definitivo.Mas , segundo artigo publicado pelo European Annals of Allergy and Clinical Immunology o nosso tradicional raio-x de seios da face pode ser o primeiroexame solicitado pois o diagnóstico é preciso na maioria dos casos.

A sinusite crônica, condição que causa obstrução nasal, coriza, dor facial, cefaléia e eventualmente redução do olfato fica definida clinicamente quando se instala por um período de 12 semanas. Tratamento medicamentoso desta condição difere da rinite persistente, mas o diagnóstico diferencial muitas vezes não é tão simples.

Quando os exames de imagem são necessários para complementar a endoscopia rino-faríngea com fibra ótica, em geral são solicitados exames de CT ou RM (nota: essa é uma conduta prevalente no País de origem dos autores). As imagens produzidas por qualquer um destes métodos é superior aos raios x. O CT de seios paranasais prove resolução superior tanto na avaliação do tecido ósseo como de partes moles e diferencia eventuais superposições, eventualmente presentes no raio x. Imagens virtuais endoscópicas inclusive podem ser obtidas com a utilização de software 3D.

A vantagem da Ressonância, além da eliminar a exposição da criança à radiação, permite avaliação detalhada dos tecidos moles, o que auxilia a diferenciar e avaliar a extensão do processo inflamatório.Diferentemente do CT, consegue diferenciar diferentes opacificações sinusais.

Então, porque solicitar um RX de seios da face como primeiro exame? Qual a justificativa? É um exame muito barato, os aparelhos de raios X estão sempre disponíveis e , o mais importante, é possível realizar o diagnóstico na maioria dos casos, de acordo com o trabalho do Dr. Gualtiero Leo, alergista pediatrico no Hospital Infantil Buzzi e colegas. (Eur Ann Allergy Clin Immunol, December 2010, Vol. 42:6, pp. 199-204).

Os autores encorajam e recomendam o uso do raio x de seios da face , ao contrario de outros especialistas.Os autores observaram que o European Position Paper on Rhinosinusitis and Nasal Polyps de 2007 justifica a recomendação do uso do CT devido à eventual falsos positivos do raio x.

Entretanto, Dr. Leo e colaboradores referenciaram três estudos recentes que comparam a acurácia do diagnóstico de sinusite realizado pela incidência de Waters convencional e o CT. O RX teve sensitividade que variou de 68% a 84,2 % e especificidade de 69 a 87%.

Em vista destes dados, a maioria das sinusites podem ser diagnosticadas pela incidência de Waters neste grupo. CT e Ressonancia podem diferenciar os 15% ou 25 % dos casos remanescentes que necessitem maior detalhamento.

Em 2010, o preço de um raio x simples na Itália gira em torno de 30 euros, comparado com 107 euros para um CT e 153 euros para uma ressonância. Com as diversas economias mundiais buscando reduzir custos em saúde, obter um raiox simples é uma conduta bastante sensata, concluem os autores.
Fonte:
By Cynthia E. Keen, AuntMinnie.com staff writer

11 de abr. de 2011

Saiba o Que é PACS e DICOM

Com o surgimento da Tomografia Computadorizada no inicio dos anos 70 iniciou-se o uso de imagens digitais no diagnóstico e, com o desenvolvimento tecnológico diversas modalidades diagnósticas passaram a se utilizar de imagens digitais.

Um Sistema de Informação Hospitalar (SIH) contém um grande conjunto de informações digitais, as quais incluem dados financeiros, gerenciais, informações de paciente (PEP – Prontuário Eletrônico de Paciente e RIS– Radiology Information System). Devido ao tipo de tecnologia empregada, as imagens médicas são consideradas como um sistema à parte, e são organizadas em um sistema de transmissão e arquivamento de imagens médicas chamado PACS.

O PACS é um sistema que proporciona o armazenamento e comunicação de imagens geradas por equipamentos médicos que trabalham com imagens originadas em equipamento de TC, RNM, US, RX, MN, PET, etc., de uma forma normalizada possibilitando que as informações dos pacientes e suas respectivas imagens digitalizadas e, armazenadas em mídia eletrônica sejam compartilhadas e visualizadas em monitores de alta resolução, distribuídos em locais fisicamente distintos.

Os principais elementos a serem observados na estrutura do PACS são:

· Dispositivos de entrada (RX, RNM, TC, US, MN, PET, etc.)

· Rede de computadores

· Servidor de DICOM

· Integração com o RIS e HIS

· Dispositivos de saída (monitores, impressoras, gravadoras)

Figura 1 - Equipamentos que compõem o PACS

Os equipamentos de aquisição de imagem, TC, RNM, CR, US, MN, PET, em sua maioria já produzem imagens em formato digital. O Raio-X convencional ou simplesmente radiografia, continua sendo o principal método de imagem utilizado para o diagnóstico e, no Brasil, quase que em sua totalidade ainda são adquiridos em equipamento que produzem imagem analógica (filme).

É imperativa a inserção da imagem radiológica simples no universo digital. Inicialmente de qualidade questionável (particularmente nos exames de mamografia) hoje apresentam grande evolução em sua qualidade diagnóstica, e estudos demonstram que a imagem digital permite acurácia semelhante e em alguns casos superiores às imagens analógicas convencionais.

As formas de aquisição de uma imagem radiográfica digital são duas:

· Radiografia Digital – DR (do inglês: Digital Radiology) - Imagens adquiridas por aparelhos de raios-X que, ao invés de utilizar filmes radiográficos, possuem uma placa de circuitos sensíveis aos raios X que gera uma imagem digital e a envia diretamente para o computador na forma de sinais elétricos.

· Radiografia Computadorizada – CR (do inglês Computerized Radiology) - Neste processo, utilizam-se os aparelhos de radiologia convencional (os mesmo utilizados para produzir filmes radiográficos), porém substituem-se os “chassis” com filmes radiológicos em seu interior por “chassis” com placas de fósforo (Figuras 2, 3 e 4).

Figura 2 - Chassis com placas de fósforo (Fonte: NDT - Fuji).

Figura 3 - Equipamento para leitura de placas de fósforo e produção de imagem digital

(Fonte: NDT - Fuji)

Figura 4 - Processo de leitura das placas de fósforo e conversão de sinal analógico em digital (Fonte: NDT - FUJI).

Os sistemas de imagem radiográfica convencionais registram e mostram seus dados numa forma analógica. Têm freqüentemente exigências de exposição muito rígidas devido à gama estreita de profundidade de brilho dos filmes e hipóteses muito reduzidas de processamento de imagem. Os sistemas de radiografias digitais oferecem a possibilidade de obtenção de imagens com exigências de exposição muitas menos rigorosas do que os sistemas analógicos. No sistema de aquisição convencional as imprecisões em termos de exposição provocam normalmente o aparecimento de radiografias demasiado escuras, demasiado claras ou com pouco contraste, são facilmente melhoradas com técnicas digitais de processamento e exibição de imagem.

As vantagens dos sistemas de radiografia digitais, que são também extensíveis às demais modalidades diagnósticas, podem ser divididas em quatro classes:

1º) Facilidade de exibição da imagem – Na radiografia digital a imagem vai ser mostrada em um monitor de vídeo, em vez do processo tradicional de expor o filme contra a luz.

2º) Redução da dose de raios-X – Ajustando-se a dose para que a imagem tenha uma relação sinal ruído conveniente, consegue-se uma diminuição real da radiação absorvida pelo paciente.

3º) Facilidade de processamento de imagem – O aumento do contraste ou a equalização por histograma são técnicas digitais que podem ser usadas. A técnica de subtração de imagens pode remover grande parte da arquitetura de fundo não desejado, melhorando assim a visualização das características importantes da radiografia.

4º) Facilidade de aquisição, armazenamento e recuperação da imagem – Armazenamento em bases de dados eletrônicas, facilitando a pesquisa de dados e a transmissão para longas distâncias, usando redes de comunicações de dados.

PADRONIZAÇÃO DE IMAGENS MÉDICAS

Para a comunicação de dados computacionais entre diferentes sistemas é necessária a padronização da linguagem utilizada. O uso crescente dos computadores em aplicações clínicas por fabricantes de equipamentos, gerou a necessidade de um método padrão para arquivamento e transferência de imagens e informações entre os dispositivos com origem de fabricantes diferentes.

Inicialmente os equipamentos produziam formatos diferentes de imagem digital (gif, jpeg, bmp, entre outros).

·O American College Of Radiology (ACR) e a National Eletrical Manufacturers Association (NEMA), sediados nos EUA, deram origem a um comitê comum em 1983 para desenvolver um padrão de imagem cujos principais objetivos são: promover a comunicação de informações de imagens digitais; padronização dos diversos fabricantes de aparelhos que geram imagens médicas; facilitar o desenvolvimento e expansão dos sistemas PACS e permitir a criação de uma base de dados de informações de diagnósticos que possam ser examinadas por uma grande variedade de aparelhos distribuídos em uma rede em um ou em vários estabelecimentos de saúde (NEMA, 2005).

O DICOM - Digital Imaging and Communications in Medicene é o padrão desenvolvido por este comitê que publicou a primeira versão em 1985, chamada de ACR-NEMA 300-1985 ou (ACR-NEMA Version 1.0) e a segunda versão em 1988, chamada de ACR-NEMA 300-1988 ou (ACR-NEMA Version 2.0). A terceira versão do padrão, que recebeu então o nome de DICOM 3.0 foi apresentado em 1993.

O padrão de DICOM é um padrão em permanente desenvolvimento e mantêm-se de acordo com os procedimentos do comitê de padrões de DICOM. As sugestões para atualizações são propostas pelos membros do comitê de DICOM, estas propostas são consideradas para inclusão nas edições futuras do padrão. Uma exigência para que a proposta de atualização seja considerada é de que o padrão deve manter a compatibilidade eficaz com edições precedentes.

Atualmente o DICOM é gerido por um comitê composto por praticamente todos os grandes fabricantes de equipamentos para imagem diagnóstica e, por grandes instituições médico-cientificas em todo o mundo, totalizando aproximadamente 50 membros, entre eles: Agfa, Kodak, Toshiba, Philips, Siemens, American College of Radiology, Societe Fraçaise de Radiolgie, Societa Italiana di Radiologia Medica, Korean PACS Standard Committee, entre outros (NEMA, 2005).

Fonte: Marcelo Ortiz Ficel